- Title
- Application of "macromolecular crowding" in vitro to investigate the naphthoquinones shikonin, naphthazarin and related analogues for the treatment of dermal scars
- Creator
- Fan, Chen; Lim, Lay Keng Priscilla; Loh, See Qi; Ying Lim, Kimberley Ying; Upton, Zee; Leavesley, David
- Relation
- Chemico-Biological Interactions Vol. 310, no. 108747
- Publisher Link
- http://dx.doi.org/10.1016/j.cbi.2019.108747
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2019
- Description
- Pathological scarring is an intractable problem for both patients and clinicians. A major obstacle for the development of scar remediation therapies is the paucity of suitable in vivo and i>vitro model models. The "Scar-in-a-jar" model was previously established by our colleagues based on the principle of "Macromolecular crowding". This has been demonstrated to be an extracellular matrix-rich in vitro model offering a novel tool for studies related to the extracellular matrix. In the study reported herein, we have optimised this approach to model human dermal fibroblasts derived from hypertrophic tissues. This optimised i>vitro model model has been found to hold similar properties, such as increased collagen I, interleukins and transforming growth factor beta-1 expression, compared to that observed in hypertrophic scar tissue in vivo. In addition, Shikonin has been previously demonstrated to hold potential as a novel hypertrophic scar treatment due to its apoptosis-inducing property on hypertrophic scar fibroblasts. Other Shikonin analogues have also been reported to hold apoptosis-inducing properties in various cancer cell lines, however, the effects of these analogues on hypertrophic scar-related cells are unknown. We therefore evaluated the effects of Shikonin and its analogues on hypertrophic scar-derived human fibroblasts using the optimised "Macromolecular crowding" model. Our data indicates that Shikonin and Naphthazarin are the most effective molecules compared to related naphthoquinones. The data generated from the study offers a novel i>vitro model collagen-rich model of hypertrophic scar tissue. It also provides further evidences supporting the use of Shikonin and Naphthazarin as potential treatments for hypertrophic scars.
- Subject
- shikonin; naphthazarin; hypertrophic scars; macromolecular crowding; SDG 3; Sustainable Development Goals
- Identifier
- http://hdl.handle.net/1959.13/1446397
- Identifier
- uon:42857
- Identifier
- ISSN:0009-2797
- Language
- eng
- Reviewed
- Hits: 1893
- Visitors: 1888
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|